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ABSTRACT

The empirical power of a new multivariate goodness-of-

fit test proposed by Foutz (1980) is investigated. The

test has been applied to Monte Carlo samples from bivariate

and trivariate normal distributions with a variety of mean

vectors and covariance matrices. The null hypothesis

tested is that the sample is from a multivariate normal

distribution with 0 mean vector and covariance matrix the

identity I. The observed number of rejections in 5000

replications is used as the measure of effectiveness of

the test. The results indicate that the Foutz test is

quite capable of detecting mean and variance shifts but

is not as powerful against covariance shifts.
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I. INTRODUCTION

In statistical analysis, choosing the correct distri-

bution to model available data is of importance. A class

of procedures known as goodness-of-fit tests has been

derived to test the hypothesis that a set of samples is

from a given distribution. Many of these tests are

readily available and are well known, such as the Chi-

square or the Kolmogorov-Smirnoff (K.S.) goodness-of-fit

test. These tests were designed for univariate distri-

butions and are not usable as multivariate goodness-of-fit

tests in their present form.

In 1980 Robert V. Foutz [Ref. 11 proposed a new multi-

variate goodness-of-fit test that will be called the Fn

test in the sequel. In analogy to the K.S. test the Fn

test compares a hypothesized cumulative distribution func-

tion (Li.jF) with a "continuous empirical distribution

function" (CEDF) formed from sampled data. Foutz found

the null distribution of the test to be distribution free

as well as being independent of the number of variates p.

Foutz obtained an integral expression for the null

distribution of the Fn test statistic, and closed form

solutions for sample size 2 or 3 were provided. The

complexity of the integral expression increases with

sample size, and a normal approximation to the null distri-

bution was given for use with larger sample sizes. Although
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the Fn test was designed as a multivariate goodness-of-fit

test it can also be used to fit univariate distributions.

Franke and Jayachandran [Ref. 2] compared the empirical

power of the Fn test with that for the Chi-square test and

the K.S. test. The results indicated that the Fn test

competes well with these other tests.

The power of the Fn test as a multivariate goodness-of-

fit test is investigated in this thesis. A description of

the Foutz test is given in Section II and the Monte Carlo

methods of simulation are presented in Section III. The

results and conclusions are in Section IV. A Fortran code

for the application of the Fn test is available in the

Appendix.
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II. THE FOUTZ TEST

The Fn test for multivariate goodness-of-fit is based on

a comparison of a hypothesized CDF with a continuous empiri-

cal distribution function (CEDF) derived from a sample. The

first step in the determination of the CEDF is the construction

of what are known as statistically equivalent blocks. A

general method for determining statistically equivalent blocks,

due to Anderson [Ref. 3], is described below.

Given a random sample X1,X2 ,...,Xn_ 1 from a p-variate con-

tinuous distribution, select n-i functions hk(X), k = 1,2,...,

n-i, not necessarily distinct, such that each hk(X) has a

continuous distribution. These functions are referred to as

cutting functions and will be used to partition the sample

space into blocks. Let klk 2 , . . . , kn_1 be a permutation of

1,2,...,n-1. Order the XX' Is according to hk (X) and define

X(k1 ) as the k1th order statistic. The sample space is par-

titioned into two blocks.

B X : hk WX < hkW )1 1 1 

B 2 X: h k 1XW > h k WXk 

At the second step if 0 < k2 < k the k-i X's in B1 are

ordered according to hk (X); X(k2) is defined as the k2th in

the ordering. Define a cut on B1 obtaining 3 blocks as follows:
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BI B 1 X: hk2(X) <hk2(X (k2))

B B n X: hk (X) > hk (X(k 2 ))
12 2 k2 -

B20 B2.

Now consider the other alternative, k2 > kI. We rank the

((n-l)-k l) X's in the second block B2 according to hk (X)
2 k 2

and let X(k2) be the (k2-k1 )th largest in the ranking. De-

fining a cut at hk (X(k2 )) we obtain the 3 blocks,

B1 0 = B1 ,

B21 = B2 n X: hk (X) <hk2(X(k2))

22j

B2 2 = 2 n X: hk2(X) > hk 2 (X(k 2 )i

The process is continued until all the cutting functions are

exhausted. This results in a partition of the sample space

into n statistically equivalent blocks, which are denoted by

Bi, i = 1,...,n.

In the univariate case an intuitively appealing choice for

the cutting functions is the identity function viz., h(X) = X

for all k. The resulting statistically equivalent blocks are

then (--,X(1)],CX(l),X(2)] ,...,(X(n-l),+-) where X(j) is the

jth order statistic. The multivariate analogue is to choose

11



individual coordinates as cutting functions, viz., hkX) -X

the jth coordinate of X. An example illustrating the con-

struction of the blocks in the bivariate case is given below

for a sample of size 8.

Let (2,4,6,8,1,3,5,7) be the permutation vector K. Define

hk(X) = X , the first coordinate of X, for k = 2,4,6,8 and

h k(X) = X , the second coordinate, for k = 1,3,5,7. Figure I

gives a graphical representation of the rectangular coordinate

method of forming blocks and Figure 2 is the representation

for the polar coordinate method. The random sample that was

used in both figures is found in Table I.

TABLE I: SAMPLE BIVARIATE DATA

N= 8
Observation 1 2 3 4 5 6 7 8

Coordinate

1 -3.54 2.25 -1.00 .71 2.00 - .75 -2.25 0.00

2 0.00 -2.25 0.50 .00 1.25 -1.50 -1.50 -0.50

The first element of the permutation vector is k = 2 and

=(1) (1)h2(X) = X I, therefore Xi is defined to be the second

smallest first coordinate. This partitions the sample space

into two blocks,

B1  = X: x ,

2 X: X (1) >(1

2 2
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The second element of the permutation vector is k 2  4,

h4 W(X) = X(1) and k2 > k1 . Hence the block B2 is partitioned

into two sub-blocks,

B2 Bl n X: X )
21 ~22B2 B2 n 1 X :  X (1 )  >_ x~l) I,

22 02 2>4x)

where X2
l ) is the second largest coordinate among the X's in

block B2. At this stage the sample space is partitioned into

three blocks. Next, the third element of the permutation

vector and the corresponding cutting function define another

partition of one of the three blocks into two sub-blocks.

This process is continued until the permutation vector is

exhausted, at which stage the sample space will be partitioned

into 9 statistically equivalent blocks.

The CEDF is now constructed by spreading a mass 1/n within

each block. If H0 is the hypothesized CDF and Hn the CEDF,

the test statistic Fn takes the form

Fn = SUP JHn(X) - H0 (X)I. (1)
X

Let Di , i = 1,2,...,n, be the probability contents of the
blocks 8i under the null hypothesis H0 , i.e., Di = f dH0 (x).

1
A computational form of the Foutz test statistic is,
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n
Fn ~ max (0,1- -D.(2)

Foutz gave the following representation for the cumulative

distribution of the test statistic

P(Fn< x) = f .. f gn(S 1id2i"...i6n-)d 6
1 &.id6 .1;-l

(3)

where

gn (116""'n-1 nI (n-i) !

for

The evaluation of this integral is cumbersome and has not been

carried out for n >5. Foutz has therefore derived a large

sample normal approximation given by

n (1/2) (x -e1
Lim P[Fn<xJ l -1 -2 1/21.(4
fl-w (2e - 5e

To check the accuracy of the normal approximation, Franke

and Jayachandran. (Ref. 4] generated 80,000 samples of sizes

20, 30 and 50. Table II contains the empirical significance

LA16



TABLE II: EMPIRICAL SIGNIFICANCE LEVEL OF THE FOUTZ Fn TEST

Sample Size 20 30 50

Normal
Significance

Level

.10 .0757 .0800 .0859

.05 .0372 .0399 .0428

.01 .0082 .0083 .0093

levels, when the normal approximation was used to determine

the critical values for the Fn test.

It is clear that the rejection rates given in Table II

are consistently lower than the nominal values. More accu-

rate critical values were therefore determined from the

80,000 Fn values and are presented in Table III.

TABLE III: APPROXIMATE CRITICAL VALUES FOR Fn TEST

Sample Size 20 30 50

Significance Level

.10 .42714 .41903 .40816
(.43586) (.42383) (.41150)

.05 .44865 .43553 .42116
(.45513) (.43969) (.42386)

.01 .48659 .46579 .44487
(.49127) (.46944) (.44706)

Values in parentheses are those obtained from the normal
approximation given by Foutz.
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III. DESCRIPTION OF THE SIMULATION

In order to check the efficacy of the Foutz test as a

multivariate goodness-of-fit test a simulation was run to

generate sample data from various bivariate and trivariate

normal distributions. The hypothesis tested in each case

is that the sample is from a multivariate normal distribu-

tion with mean vector 0 and covariance matrix the identity

I. Rectangular and the polar/spherical method of blocking

were both used and compared as to their effect in each

case.

To validate the blocking schemes, the null hypothesis

is tested against data generated from the distribution

N(O,I). Bivariate and trivariate sample sizes of 20, 30

and 50 are used to compute the Fn statistic which is then

compared to the empirical critical levels found in Table III.

Rejection rates are based on the number of rejections in

20,000 replications for each sample size. Comparing the

null rejection rates to the nominal significance level

used, as shown in Table III, provides evidence supporting

both blocking methods as all null rejection rates are close

to the significance level used.

The empirical power of the test was then investigated

by varying the distribution tested. This investigation is

accomplished in three different ways. First, the mean is

18



shifted away from the 0 vector while leaving the covariance as

the identity matrix. This is done to investigate the ability

of the test to detect location shifts. The covariance matrix

is then changed from the identity while leaving the mean as

the 0 vector. This is accomplished by changing the diagonal

elements alone to investigate variance shifts and then shift-

ing the off diagonal elements by themselves to check the effect

of covariance shifts. A primary sample size of 20 was chosen

for comparison and 5000 replications were used to compute

rejection rates for each distribution tested. Mixing of the

three types of shifts is also simulated to investigate the

possible confounding effects of the three shifts. Finally

sample sizes of 30 and 50 are run on a few of the distribu-

tions to determine the effect of increasing the sample size.

The various multivariate normal distributions are simulated

in the following manner. Univariate normal(0,1) pseudorandom

deviates are obtained from the LLRANDU series by Lewis [Ref. 5]

and grouped to form a multivariate N(O,1) p-variate vector.

Taking the )' so formed, the p-variate N(0,1) vector random

variable is transformed by

c + x, ()

where

C' Z C =

19



resulting in an X which is distributed as N(p,j_). The Foutz

test is then applied to each of the samples consisting of

(n-1)Xs.

An example using a bivariate sample helps illustrate the

blocking procedure used. Let X1,X2, ' ... Xnl, be the simu-

lated bivariate sample. The first cut is made on X1 ) or-l

the first coordinate of the first vector XI. Two blocks are

formed,

First Second
Coordinate Coordinate

B X (1)BI  -- (=,X ] (-oo,+-)

B (1)B2 (x.(1 ,+° ) (_oo,+ca).

X2 is taken next and determined to be contained in block B1

or B2. Suppose X2 is in block B2 . B2 is then partitioned

by X(2) or the second coordinate of sample. 2. Three blocks

are now defined as,

First Second
Coordinate Coordinate

B = (-,X
1.0

B22 - (X(1),4-o) (-2)]
22 1 -2

20



This procedure is continued by examining the next vector

in the random sample, locating the block that it is contained

in and partitioning the block by the designated coordinate.

The coordinate cutting functions used are alternated starting

with the first coordinate for the first cut. Coordinate

ranges, as shown, are used to designate blocks and the process

is continued until n blocks are so defined. Given any random

sample this method can be shown to be equivalent to a unique

permutation vector K and a set of cutting functions {hk} as

defined in Section II.

After the formation of the statistically equivalent blocks,

each block has the probability content of 1/n and must be

compared to the hypothesized content using the statistic

n 1
Fn = [ max[0, -D i ] . (2)i=l 1

Dl, the probability content of each block, under the null

hypothesis, is defined by the integral of the null density

over the block. The integral of the multivariate normal (0,I)

over a rectangular block yields

-p" . . ( 2 ) e (1/ 2 ) 'I x
Di

21



F- -;4

This reduces to the product of the marginal densities which

may be easily evaluated with many available routines, elimi-

nating the need for numerical integration.

In spherical coordinates Di is represented by

82 2 P2( 1 2

Di = 2 P f 22 (-3/2) e sin(o)p 2 dpdedo.

(4)

Upon separation,

fp2  82 p2 2e(-1/2) 2
Di = f (/2)sin'pd$ f (21T)-d8 P 2 )1 I 81 p1  (2 i)1/

(5)

Noting that with a change of variables the third integrand

is a Chi-square density with 3 degrees of freedom, we may

use a closed form expression to evaluate D as follows:

D [12 _2Di  112(cos 2 -cos 01) ] x [2L (e 2-6 1) x× 3df(P2)- 3df(p1 ) ]

(6)

where

2 ) 2 i 1,2.
X3df(Pi) P[x3df<i],

For bivariate data the use of polar coordinates leads to

similar simplification leaving Di in the form

22



2 2

th = (6;Ie6) xt (R I..:X (Rj. tHe (7l)i.

Di  TI 2e-l 1 -d 2 ×2dfSl. 1V

After the calculation of the probability contents Di for

the n blocks, equation (2) is used to evaluate the Fn statis-

tic for each generated sample. The statistic is then compared

to the critical values found in Table III to decide if the

null hypothesis is accepted or rejected. Rejection rates

are defined by the number of rejections divided by the number

of replications in a given run. The rejection rates thereby

define an empirical power for the simulated distribution.

The major component of the Fortran simulation program

used to evaluate the Foutz statistic for a given sample is

available in the Appendix. It has been adapted for use for

sample sizes up to 50, with redimensioning being needed for

larger sample sizes. The program is applicable for fitting

data from any hypothesized multivariate normal distribution

and provides the Fn statistic as computed by both blocking

methods presented. The code is self-contained except for

three IMSL routines, LUDECP, VMNOR, and MDCH (Ref. 6]. These

subroutines provide matrix decomposition, univariate normal

probabilities and chi-square probabilities, respectively,

and must be available or substituted prior to utilization

of the ?rogram.
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IV. RESULTS AND CONCLUSIONS

The results of the simulation are summarized in

Tables IV-XIV. Rejection rates are given by the distribu-

tion tested and the significance level used. Empirical

power curves are presented in Figures 3-8. Rejection rates

are plotted against the magnitude of the shift in mean,

variance and covariance for the distribution tested. All

power curves are based on 5000 replicated samples and

were compared at the a = .05 significance level.

The results for the case in which the distribution of

the samples is the same as the hypothesized distribution

viz., N(O,I) are given in Tables IV and V. The rejection

levels obtained are close to the nominal significance

level for both blocking methods. No distinct pattern of

variation about the prescribed levels is discernible for

either method, as expected.

The rejection rates for mean shifts are given in Tables

VI-VII and Figures 3-4. Shifts in the mean vector are

detected well; a shift of one standard deviation in a

single coordinate resulted in a 60% rejection rate for

bivariate or trivariate data. Greater shifts in mean led

to even higher rejection rates. The rectangular method

of blocking consistently gave about a 10% improvement over

the polar/spherical method in detecting mean shifts.

24



Results for variance shifts are contained in Tables

VIII and IX and the power curves are given in Figures 5

and 6. The Foutz test did not detect small variance

shifts very well but the performance of the test was far

better for larger shifts or shifts in more than one coor-

dinate. No one method of blocking performed better in all

cases but in general the polar/spherical method seemed to

outperform the rectangular method for detecting variance

shifts.

The results for changes in covariance are summarized

in Tables X, XI and Figure 7. Covariance shifts are not

detected well for either blocking method except for highly

correlated data with the correlation coefficient equal to

.9. The polar/spherical coordinate blocking method appeared

to perform a little better than the rectangular coordinate

method of blocking, but in general the simulation revealed

that the Fn test is not very powerful against covariance

shifts.

The empirical power for combinations of shifts in mean

and variance or covariance are presented in Tables XII and

XIII. Entries are based on an a = .05 significance level

and are tabled by the mean vector and covariance matrix

of the sample data. Entries farther down and to the right

correspond to greater shifts in mean and variance/covariance

and are generally larger, as is to be expected. There are

no apparent confounding problems due to shifts in both

25



parameters. The rectangular method of blocking, however,

did outperform the polar/spherical method for most cases

of multiple shifts.

The results indicative of the effect of increasing the

sample size are summarized in Tables XIV and XV. Results

for sample sizes of 20, 30, and 50 are given for some

representative cases. The tables reveal higher rejection

rates for larger sample sizes with increases being compa-

rable for both blocking methods.

This study was limited to the two and three variate

normal distribution. There are many problems for further

research. Of primary concern is the generation of percen-

tage points of Fn for various values of n. The intracta-

bility of the problem of obtaining the exact distribution

requires an empirical approach to finding a correction to

the asymptotic approximation given by Foutz. Since the

use of coordinates as cutting functions worked well, the

method should be tried for other distributions and higher

dimensions.

In conclusion, the Fn test is found to be a viable

option for testing goodness-of-fit of multivariate normal

distributions. These encouraging empirical results indicate

further study should be conducted to explore the potential

of this test for other distributions.
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TABLZ IV: NULL EMPIRICAL REJECTION LEVELS FOR
THE BIVARIATE NORMAL DISTRIBUTION

Significance Level .01 .05 .10
Blocking Method

N = 20

Rectangular .0098 .0488 .0940
Polar .0096 .0482 .1020

N = 30

Rectangular .0110 .0510 .0944
Polar .0082 .0454 .0890

N =50

Rectangular .0120 .0498 .0950
Polar .0098 .0484 .0958

BASED ON 20,000 REPLICATIONS

27



TABLE V: NULL EMPIRICAL REJECTION LEVELS FOR
THE TRIVARIATE NORMAL DISTRIBUTION

Significance Level .01 .05 .10
Blocking Method

N = 20

Rectangular .0104 .0440 .0982
Spherical .0120 .0518 .1048

N = 30

Rectangular .0114 .0480 .0956
Spherical .0140 .0484 .0914

N = 50

Rectangular .0098 .0484 .0960
Spherical .0088 .0478 .0914

BASED ON 20,000 REPLICATIONS
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TABLE VI: REJECTION RATES FOR SHIFTS IN MEAN (BIVARIATE)

N = 20

Critical Value .01 .05

Mean Tested

0 .0094 .0488 .0998
0 .0102 .0482 .0996

-.5 .0566 .1684 .2816
0 .0346 .1096 .2138

.5 .0574 .1710 .2700
0 .0430 .1388 .2298

-.5 .1408 .3164 .4534
-.5 .1038 .2592 .3610

.5 .1294 .3024 .4406

.5 .1230 .3164 .4534

-1 .4357 .6664 .7834
0 .2340 .4484 .6046

1 .4464 .6700 .7842
0 .2444 .6664 .7834

-1 .8382 .9418 .9748
-1 .7780 .9212 .9610

1 .8428 .9418 .9718
1 .6930 .9212 .9610

-2 .9936 .9980 .9996
0 .9926 .9990 .9996

2 .9948 .9998 1.0000
0 .9762 .9950 .9980

-2 1.0000 1.0000 1.0000
-2 1.0000 1.0000 1.0000

2 1.0000 1.0000 1.0000
2 1.0000 1.0000 1.0000

BASED ON 5000 REPLICATIONS

FIRST ENTRY--RECTANGULAR
SECOND ENTRY--POLAR
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TABLE VII: REJECTION RATES FOR SHIFTS IN MEAN (TRIVARIATE)

N = 20

Critical Value .01 .05 .10

Mean Tested

0 .0104 .0440 .0982
0 .0120 .0518 .1048
0

-.5 .0492 .1502 .2474
0 .0216 .0980 .1632
0

.5 .0480 .1438 .2484
0 .0280 .1036 .1874
0

-.5 .1076 .2704 .3990
-.5 .0472 .1516 .2516

0

.5 .0972 .2424 .3688

.5 .0658 .1912 .3046
0

.5 .1826 .3788 .5170
-.5 .0848 .2198 .3584
-. 5

.5 .1738 .3642 .4948

.5 .0848 .2198 .3584

.5

-1 .3782 .5984 .7212
0 .1184 .2942 .4212
0

1 .3728 .5984 .7212
0 .1174 .2866 .4234
0

-1 .7392 .8892 .9410
-1 .3808 .6020 .7338
0

1 .7400 .8892 .9410
1 .4670 .6918 .7934
0
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TABLE VII (Continued)

Critical Value .01 .05 .10

Mean Tested

-2 .9636 .9872 .9958
0 .7772 .9138 .9916
0

2 .8992 .9676 .9832
0 .8486 .9448 .9736
0

-1 .9134 .9778 .9894
-1 .7688 .8744 .9312
-1

1 .9102 .9746 .9900
1 .7936 .9244 .9598
1

-2 1.0000 1.0000 1.0000
-2 .9984 .9996 1.0000
0

2 1.0000 1.0000 1.0000
2 .9998 1.0000 1.0000
0

-2 1.0000 1.0000 1.0000
-2 1.0000 1.0000 1.0000
-2

2 1.0000 1.0000 1.0000
2 1.0000 1.0000 1.0000
2

BASED ON 5000 REPLICATIONS

FIRST ENTRY-- RECTANGULAR
SECOND ENTRY--SPHERICAL
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TABLE VIII. REJECTION RATES FOR SHIFTS IN
VARIANCE (BIVARIATE)

N = 20

Critical Values .01 .05 .10

Variance Tested

1 0 .0094 .0488 .0998
0 1 .0102 .0482 .0996

1 0 .1864 .3786 .5150
0 3 .1578 .3342 .4640

2 0 .2228 .4292 .5628
0 2 .1714 .3582 .4928

1 0 .4030 .6322 .7474
0 5 .4286 .6448 .7574

3 0 .5790 .7666 .8580
0 3 .5338 .7450 .8368

1 0 .5640 .7608 .8556
0 7 .6312 .8106 .8856

1 0 .7092 .8618 .9222
0 10 .8088 .9228 .9600

5 0 .8998 .9664 .9832
0 5 .8998 .9665 .9804

10 0 .9956 .9994 .9998
0 10 .9920 .9978 .9988

BASED ON 5000 REPLICATIONS

FIRST ENTRY--RECTANGULAR
SECOND ENTRY--POLAR
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TABLE IX. REJECTION RATES FOR SHIFTS IN VARIANCE
(TRIVARIATE)

N = 20

Critical Value .01 .05 .10

Variance Tested

1 0 0 .0104 .0440 .0982
0 1 0 .0120 .0518 .1048
0 0 1

3 0 0 .0924 .2372 .3626
0 1 0 .1606 .3438 .4736
0 0 1

2 0 0 .1500 .3330 .4644
0 2 0 .0888 .2208 .3308
0 0 1

5 0 0 .1940 .3832 .5372
0 1 0 .4146 .6374 .7550
0 0 1

7 0 0 .2708 .5026 .6332
0 1 0 .6100 .8032 .8792
0 0 1

2 0 0 .2758 .5012 .6326
0 2 0 .2510 .4538 .5814
0 0 2

3 0 0 .4140 .6270 .7514
0 3 0 .3240 .5394 .6566
0 0 1

3 0 0 .6622 .8372 .9038
0 3 0 .6752 .8312 .8966
0 0 3

10 0 0 .3716 .5980 .7186
0 1 0 .7880 .9078 .9506
o 0 1

5 0 0 .7558 .8896 .9346
0 5 0 .7256 .8660 .9182
0 0 1

5 0 0 .9390 .9770 .9872
0 5 0 .9292 .9762 .9852
0 0 5
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TABLE IX (Continued)

N = 20

Critical Value .01 .05 .10

Variance Tested

10 0 0 .9572 .9866 .9950
0 10 0 .9470 .9832 .9926
0 0 0

10 0 0 .9972 .9998 1.0000
0 10 0 .9858 .9970 .9994
0 0 10

BASED ON 5000 REPLICATIONS

FIRST ENTRY--RECTANGULAR
SECOND ENTRY--SPHERICAL
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TABLE X: REJECTION RATES FOR SHIFTS IN COVARIANCE
(BIVARIATE)

N = 20

Critical Value .01 .05 .10

Covariance Tested

1 0 .0094 .0488 .0998
0 1 .0102 .0482 .0996

1 -. 3 .0152 .0558 .1068
-. 3 1 .0126 .0598 .1274

1 .3 .0126 .0576 .1178
.3 1 .0136 .0656 .1258

1 -. 6 .0288 .1008 .1782
-. 6 1 .0514 .1576 .2560

1 .6 .0250 .0912 .1702
.6 1 .0648 .1838 .2984

1 -. 9 .1166 .2996 .4446
-. 9 1 .2378 .2982 .6162

1 .9 .1122 .2996 .4446
.9 1 .2378 .4710 .6042

BASED ON 5000 REPLICATIONS

FIRST ENTRY--RECTANGULAR
SECOND ENTRY--POLAR
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TABLE XI: REJECTION RATES FOR SHIFTS IN COVARIANCE
(TRIVARIATE)

N =20

Critical Value .01 .05 .10

Covariance Tested

1 0 0 .0104 .0440 .0982
o 1 0 .0120 .0518 .1048
0 0 1

1 0 -.3 .0104 .0540 .1076
0 1 0 .0124 .0488 .1066

-.3 1

1 0 .3 .0106 .0468 .0972
0 1 0 .0124 .0512 .1086
.3 0 1

1 .3 .3 .0126 .0560 .1112
.3 1 .3 .0162 .0676 .1292
.3 .3 1

1 0 -. 6 .0152 .0740 .1394
0 1 0 .0122 .0584 .1158

-. 6 0 1

1 0 .6 .0148 .0674 .1298
0 1 0 .0128 .0582 .1194
.6 0 1

1 .6 .6 .0308 .1136 .1960
.6 1 .6 .0432 .1434 .2486
.6 .6 1

1 0 -.9 .0412 .1358 .2314
0 1 0 .0254 .0974 .1842

-.9 0 1

1 0 .9 .0402 .1386 .2368
0 1 0 .0258 .1386 .2368
.9 0 1

1 .9 .9 .1406 .3454 .4942
.9 1 .9 .3646 .5950 .7122
.9 .9 1

BASED ON 5000 REPLICATIONS

FIRST ENTRY--RECTANGULAR
SECOND ENTRY--SPHERICAL
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TABLE XII: REJECTION RATES FOR MULTIPLE SHIFTS
IN MEAN AND VARIANCE-COVARIANCE
(BIVARIATE)

N =20

Sigma 1 0 1 .6 2 0 2 .849 5 1.34
0 1 .6 1 0 2 .849 2 1.34 5

Mean

0 .0488 .0912 .1986 .2500 .9658
0 .0482 .1176 .1522 .2162 .9572

.5 .1710 .2398 .3110 .3702 .9720
0 .1388 .2482 .2498 .3402 .9650

1 .5606 .7346 .6384 .6828 .9820
0 .4348 .5952 .5334 .6316 .9764

1 .9418 .8774 .9350 .8658 .9892
1 .8576 .8588 .8722 .8308 .9840

2 .9998 .9998 .9902 .9950 .9990
0 .9950 .9990 .9772 .9882 .9964

FIRST ENTRY--RECTANGULAR

SECOND ENTRY--POLAR

BASED ON 5000 REPLICATIONS

= .05
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TABLE XIII: REJECTION RATES FOR MULTIPLE SHIFTS
IN MEAN AND VARIANCE-COVARIANCE
(TRIVARIATE)

N =20

1 0 0 1 0 .6 5 0 0 10 0 .95 5 0 0
Sigma 0 1 0 0 1 0 0 1 0 0 1 0 0 5 0

0 0 1 .6 0 1 0 0 1 .95 0 1 0 0 5

Mean

0 .0440 .0674 .5392 .7828 .9770
0 .0518 .0582 .4584 .7840 .9720
0

.5 .0480 .1830 .5708 .7946 .9832
0 .0280 .1176 .5034 .8020 .9740
0

1 .3728 .6352 .6852 .8206 .9888
0 .1174 .2912 .6254 .8422 .9824
0

1 .7400 .9074 .9270 .9668 .9930
1 .7392 .7454 .8602 .9454 .9870
0

2 .9982 .9956 .9716 .9736 .9978
0 .9726 .9752 .9742 .9774 .9976
1

FIRST ENTRY--RECTANGULAR

SECOND ENTRY--SPHERICAL

BASED ON 5000 REPLICATIONS

a = .05
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TABLE XIV: REJECTION RATES FOR INCREASING
SAMPLE SIZES (BIVARIATE)

Sample size 20 30 50

Shift

S= .01

.5 .0574 .0860 .1270
0 .0430 .0564 .0754

.5 .1294 .2026 .3652

.5 .1230 .1418 .2508

1 .3 .0126 .0140 .0176
.3 1 .0136 .0152 .0170

1 0 .1864 .2722 .4522
0 3 .1578 .2244 .3744

S= .05

.5 .1710 .2170 .2914
0 .1388 .1630 .2238

.5 .3024 .4144 .6030

.5 .3164 .3076 .4826

1 .3 .0576 .0624 .0728
.3 1 .0656 .0624 .0760

1 0 .3786 .4884 .6756
0 3 .3342 .4304 .6016

..................................................................

S= .10

.5 .2700 .3228 .4256
0 .2298 .2658 .3400

.5 .4406 .5424 .7190

.5 .4534 .4336 .6066

1 .3 .1178 .1174 .1396
.3 1 .1258 .1196 .1422

1 0 .5150 .6132 .7800
0 3 .4640 .5566 .7160

BASED ON 5000 REPLICATIONS

FIRST ENTRY--RECTANGULAR
SECOND ENTRY--POLAR
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TABLE XV: REJECTION RATES FOR INCREASING
SAMPLE SIZES (TRIVARIATE)

Sample size 20 30 50
Shift.0

.5 .0480 .0680 .1036
0 .0280 .0362 .0526
0

.5 .1738 .2932 .5040

.5 .0848 .1662 .3428

.5

1 0 .3 .0106 .0138 .0148
0 1 0 .0124 .0134 .0144
.3 0 1

3 0 0 .1606 .2054 .3528
0 1 0 .0838 .1138 .2080
0 01
.................................................

=.05

.5 .1438 .1974 .2742
0 .1036 .1256 .1646
0

.5 .3642 .5118 .7268

.5 .2198 .3588 .5868

.5

1 0 .3 .0468 .0588 .0656
0 1 0 .0512 .0488 .0540
.3 0 1

3 0 0 .3438 .3976 .5734
0 1 0 .2074 .2708 .4126

=.10

.5 .2484 .3024 .3876
0 .1874 .2132 .2650
0

.5 .4948 .6396 .8272

.5 .3584 .4912 .7040

.5

1 0 .3 .0972 .1142 .1232
0 1 0 .1086 .1030 .1102
.3 0 1

3 0 0 .4736 .5264 .6880
0 1 0 .3156 .3880 .5450
0.. 0 1-- - - - - - - - - - - - - - - - - - - -

BASED ON 5000REP LICATIONS FIRST ENTRY: RECTANGULAR
SECOND ENTRY: SPHERICAL
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APPENDIX A

USER REQUIREMENTS AND INPUT FORMAT FOR PROGRAM FOUTZ

The use of the Computer program contained in Appendix B

requires the sample size, number of variates, applicable

data and the Multivariate Normal distribution being tested

as described by the mean vector and the variance-covariance

matrix. The variables containing the required inputs as

well as the required input format are as shown below.

DESCRIPTION OF VARIABLES

N ----------------- Sample size
M ----------------- Number of Variables (2 or 3)
SIGMAl ------------ Variance-Covariance Matrix

(MxM)
Bl ----------------Mean Vector (Mxl)
X ---------------- Matrix of Sample Data (MxN)

INPUT FORMAT

N,M --------------- (215)
SIGMAl ------------ (3F12.6) Input M Rows
Bl ---------------- (F12.6) Input M Rows
X ----------------- (3F12.6) Input M Rows

Input data is echoed in the output providing a check

for correct entry of data as well as is the decomposition

of SIGMA1. The Fn statistic as computed by both methods

of blocking follows completing the output given for a

single run. An example run is given for Trivariate data

of sample size 10.
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SAMPLE TRIVARIATE RUN

FOUTZ TEST FOR 3 VARIATE NORMAL

THE NUMBER OF OBSERVATIONS = 10

OBSERVATIONS ENTERED AS FOLLOWS
3.170000 7.540000 4.230000
4.160000 5.500000 5.580000
2.330000 2.910000 6.620000
2.530000 3.440000 5.660000
1.990000 2.630000 6.320000
2.260000 2.800000 6.730000
2.630000 0.290000 6.550000
3.440000 4.860000 3.150000
3.500000 4.670000 8.310000
3.580000 3.230000 4.970000

DISTRIBUTION TESTED

COVARIANCE MATRIX
1.000000 1.000000 1.000000
1.000000 3.000000 1.000000
1.000000 1.000000 5.000000

M-EAN VECTOR
2.000000
3.000000
4.000000

DECOMPOSITION OF SIGMA
1.000000 0.0 0.0

-0.707107 0.707107 0.0
-0.500000 0.0 0.500000

WITH POLAR OR SPHERICAL COORDINATES
FOUTZ STAT= 0.593289

WITH RECTANGULAR COORDINATES
FOUTZ STAT= 0.556877
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APPENDIX B

CCMPUTER PRCGRAM FOUTZ

C ****************
C *FORTRAN CODE
C *FOUTZ
C ****************
C
C
C
C N SAMPLE SIZE
C M D IMIN6,F, EACH, VECTOR
C IRAD N V CTIR DESiGNATING COORDINATE TO CUT ON
C SIGMAl MO4MIC VARIANCE MATRIX TEST DISTRIBUTION

81 (M,1)MEAN VECTOR

C
C MAIN PROGRAM
C
C PURPOSE:
C READS IN NM AND DIMENSIONS
C LIMITED TO Nu5O,M=3 AS SET
C

DIMENSICN IRAO(5Z),VECT(50,6 1 WKVEC(6),BLOCK(51dt2),$SIGM4Al(3 3)v8113 11 1 Xl50t3 ,r AN13P1)PXTT(3,1~ 3p it3,j

READ(5v99Z)NvT
990 FORMAT(215)'

NN=N+1.

NM1=N-1
DO 10 I-1,NtM
DO 5 J=19M
IRAO( J+I-1)=J

5 CCNTINUE
10 CONTINUE

CALL D RIVECIRAD,VECTtWKVECtBLOCKBLOCSIGMA1 ,B1,NtMv
$ NN6 MM,TRANXTT,CtXTTRtX)

END

C SUBROUTINE ORIVE

E 0IVPE CRA AND VARIABLE OIMENSINS BASED ON
C M AND N. REACS IN 81 SIGMAI AND DATA TO BE
C TESTED. EC HCS INPUT bATA AND PRINTS THE
C RESULTING ~N STATISTIC.
C

C URUIEDRIE(IAIETAKEtBOK LC9SG~
SUBROUINE9MTA:TfA TDtVEtXO,

DI NSCNIRAC(N) VECPA9M J KE3PBO (Nv)
SSIGNM 1 NMtM, TRflTAN ,MIWKE(3) ,LOC(NN,61.,
SXTT(M,1I',C(M*M),X T (M 911

30 CONTINYE
992 ~ORMAT 3FP12.6)

DO 40 1019M
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READ( 5,9931I81( 1,11
993 FOR?4AT(FlZ.6)
40 CONTINUE

70 CONTINUE
cc ECHO INPUT DATA

WRITE(69800)M
WRITE (6 .801N

800 FORMATI ( 1,FCLTZ TEST FGR ' 21VARIATE NORMAL*)801 FORMAT( :'O',TH NUBRC 8el ATIONS -'tl3)
804 FORMAT(@ ',IF12.6)
605 FORMAT('0','MEAN VECTOR@)

80 kRITE(6,79 I
791 FORMAT('0't'OBSERVATIONS ENTERED AS FCLLOWS')

CO 792 IalN
792 lRITE(6t8041(X(IvJJ=114)

WR ITE( 6,807)
WRI TE16 .808)

807 FORMAT( '06#'DISTRIBUTICN TESTED')
808 FORMAT( '0't'CCVARIANCE MATRIX*)

DO 793 11l,M
793 WRITE(6,804l(SIGMA1(I,J)JJ,1M)

WRITE (6,805)
WRITE(6 806J1((IIJ),JlpltII1,MI
CALL DE OMP(SIGl4A1,MtC 0)

C ~ALL TRANSFORI4ATICN RLiUTINES

00 751 isj
751 XTT(Jt1)=XlIJ
752 FORMAT(' 1,3XtFl2.6)

CALL TRANS(MvXTTvBlTRAN,CtXTTR)
007T60J-M
VECT( I,J)!fRAh(J,l1)

760 CCNTINUE
75.) CONTINUE

E ALL BLCCKS(VECT ,NNN, M.MM, IRAD, BLOCK ,WKVEC)CALL BLCCKR(VECT*NvNN,M MM IRAD BLOCtkKVECJ
C
C BLOCK BY PCLAR CA SPHERICAL COORDINATES

CALL FCUTZ(BLCCK~hi,41FN,141
WRITE (6,989)

989 FORMAT('0 'WITH PCLAR CA SPHERICAL COORDINATES')
hR ITE(6,96)Ff

990 FORMAT(' ,'*FCUTZ STAT- 1,F12.6)
C BLOCK BY RECTANGJ AR CCORDINATES

CALL FCUTR(BL C*NN,14M,FN#Ml
WRITE(6,9881

988 FORMAT(1041 ;WITH RECTANGULAR COORDINATES')

991 FORMd(0 ' ,'FCUTZ STATz 09F12*61
RETURN

EN
C

C PVRPCiE:
C 0 CCM GSES THE CCVAR1ANCE MATRIX ENTERED.
C USE S ChCLESKY DECOMOSITION VIA INSL ROUTINE

kUDE P TO PROVIDE A MATRIX C NEEDED BY THE
RC TINE TRANS.

C SUBROUTINE OECCMP(SIGMAvMtCIVl
DIMENSION SIGMA(M4) ,C(Mm I A(51),UL(511,Ll(6JtMl(6l
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11011 ~ ~J; I

1.00 CONTINUE
CALL LUOECP(AvULMt01,02vIERJ
00 120 I=1,m
00 130 JwlM

130 O U
120) CONTINUE

IF(IV.EC.1)GO TO 121
CALL INVT(C1 M ,0,LI,141

799 FORMAT(100,'DECOI4PCSITICh OF SIGMA#)
00 765 131 M

765 WR TE(6 70)( C (1,J) J,=19M4)
700 FQRMAT(l 193F12.6)
121 CoNTINUE

RETURN
END

C ~ *o00 0 * 000@e *seg. .. 000so * ees0 00000 000 0 *@S *@@**0 0000 0.

C SUBRCUTINE INVT

PU RP CSE
c INVERT A MATRIX

C SUBROUTINE INVT(A .N.O.Llml
CIMENSICN A(1b9L(l)ioM41

C SEARCH FOR LARGEST ELEMENT
C

NK=-N
00 80 9=19N
NK=NK.N
L(K)=K
4( K) aK

KK~zNK .K
EIGA-A(KK)

IZN* 1-. 1

10 1 t ABS(BIGAI- ABS(A(IJfl) 15920920
15 BIGA:A(IJ)

L(K I
14( K) =J

20 CONTINUE
C
C INTERCHANGE ROWS
C

J=L(K)
IF(J-K) 35,35,25

25 KI=K-N
CO 30 Im1,N
KISKI*N
HOLD-A(KI I
JI=KI-K4J
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A(KI )=A(JI)
30 A(JI) *I4CLO

C
C INTERCHANGE COLUMNS
C

35 I=M(K)
IFU(-K) 45945,38

38 JP=N*(I-1I
00 40 J=1,N
JKUNK+J
JI=JP+J
IOLD=-A (JKI
A(JKI=A(JI)

40 A(JI) =HCLD
C
C DIVIDE COLUMN BY MINUS PIVOT (VALUE OF PIVOT
c ELEMENT IS CONTAINED IN BIGAI

45 IF(BIGA) 48,4t,48
46 0=0.0

RETURN
48 00 55 1=16N

IF (I-K) 5 055500
50 IK=NK+I

A( IK)=A( IK)/(-BIGA)
55 CONTINUE

C
C REDUCE MATRIX
C

00 65 lu1,N
IK=NK+l
HOLD=A( IKI
IJ=I-N
00 65 JulN
IJUIJ+N
IF(I-K) 60965P60

60 IF(J-K) 62965962
62 KJ-IJ-I.K

A( IJI=HCLD*A(KJIA(IJI
65 CONTINUE

C
C DIVIDE RCW BY PIVCT
C

KJ=K-N
DO 75 J-1.,N
KJSKJ.N
IF(J-K) 70,75,70

70 A(KJ)aA(KJI/BIGA
75 CONTINUE

c
C PRODUCT OF PIVCTS
C

OuO*BIGA
C
C REPLACE PIVOT BY RECIPROCAL
C

A(KK3=1.0/BIGA
80 CCNTINUE

C
C FINAL ROW AND COLUMN INTERCHANGE
C

Ku N
100 Kn(K-11

IF(K) 15091509105
105 I=L(K)

IF(I IK) 12091209108
1138 JQ*N*(K 1)
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JR=N*(I-l)
00 110 J-1,N
JK=JQ J
HOLDOA( JK)
JI=JR+J
A(JKI=-A(JI

110 A(JI) =HCLD
120 J-M(K)

IF(J-K) 100,100,125
125 KIK-N

DO 130 I=1,N
KI=KI+N
HOLD=AtKI)
JI=KI-K+J
A(K I=-A(JI)

130 A(JI) =hCLD
GO TO 100

150 RETURN
END

C SUBROUTINE TRANS
C
C PURPOSE: TO TRANSFCRM OBSERVATIONS TC NEOII
C UNDER THE NULL HYPOTHESIS. 6SES INPUT
C VALUES OF Bl ANC THE MATRIX C FROM DECOMP
C TO TRANSFORM THE DATA ENTEREC USING,C *

C
SLBROUTINE TRANS(MXTTB1,TRAN,CXTTR)
OIMENSICN 81(Mv,IXTT(MoIiXTTR(M, lJTRAN(M,1i,C(MiMJ
CALL SUB(XTT.E1,XTTRM,1i
CALL PRD(CXTTR, TRAN ,M ,Mt,)
RETURN
ENDC eog... egg..eggegeoo oeo ooooooo * oe... eggoe o geeooo o,* eg....C

C SUBRCI"TINE SUB
C
C PURPCSE

c SUBTRACT uNE MATRIX FROM ANOTHER TO
C FCRM RESULTANT MATRIX.C e. .oo o, ge... eo g ee..oo gegeo oog.ee eo oo.. oeg...ooC

SUBROUTINE SUE(A,8,RN44)
DIMENSION A(1I,8(At1R(!)

C
C CALCULATE AUMBER CF ELEMENTS
C

NM=N*M
C
C SUBTRACT MATRICES
C

00 10 I=INM
10 R( I)=A(I)-B(I

RE TURN
END

C
C

SUBRCUTINE PRO

C
PURPOSE

MULTIPLY TWO MATRICES TO FORM A
C RESULTANT MATRIX,
C
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C a a a 0a
C

SUBROUTINE PRC(A*BtRN,14,L)
DIMENSION A(1i.B(liJR(1I

C
IR=O

00 10 KaltL
IK=IK*M
DO 10 JIl,N
IR=IR+.

R( IR1=
D0 10 I=l1M
JI=JI+N
IB=18+1

10 R(IRI=R(IR)+A(JI)*BUBI)
RE TURN
END

C SLBROLTINE BLOCKS
C
C PURPCSE:
C THIS SU1BROUTINE TAKES N N-VARIATE VECTCRS AND PARTITIONS
C A SPACE OF DIMENSION N INTO N+1. STATISTICALLY EQUIVALENT
C BLCCKS BY RECCRCING BLOCK COORDINATE RANGES IN A MATRIX
C BLOCK BY THE USE OF SPHERICAL OR PCLAR COCROINATESAS,
C AS CUTTING FUNCTIONS. THE CUTTING COORDINATE USED AT
C EACH STEP IS CONTAINED IN A VECTOR IRAD.

C
SUBROUTINE BLCCKS(VECT,N,NNMMM,IRACBLOCKWKVEC)
CIMENSICN VECTCNM),BLOCK(NN,61,IRAD(N)IWKVEC(6)
ZLI1.OE-8
8LCCK( 1, i=o. a
ELCCK( 1,2)=1000.
BLOCK (1 :31 20. 0
BLCCK(1 ,4)-6, 2831853
SLOCK(1 ,5)=0.Q
BLOCK( 1 96) =39 1415927
DO 100 Jl,N
TEMP0. 0
c0 110 1=1,IM

110 TEMP=TEMP+VECTCJ,I )**2
RAOzTEMP**. 5IF(RAD.GT.ZL)GO TO 112
TDEG-6.283 1853
PDEG=3.141 1;27
GO TO 111

112 TARG-VECT(J,1)/((VECT(J,1i**2+VECT(J,2)**2)**.5)
PARG-VECT(J,M D/RAD
IF(TARG.LT.-1 .)TARG=-1.
IF(TARG.LT*1*iGO TC 1122
TARG=1.0
IF (PARG.LT.-1 *)PARG=-l.

1122 IF(PARG.LT.1.0)GO TO 1123
PARG 1.0

1123 OE G12COS( TARG)
IF(VECT(J,2koGT.0.IGO TO 111
IF (DEs LT.1.5707963)GO TO 113
DE GuDE+1.5707963
GO TO III,

113 DEGaOEG*4.712389

WKVEC(1 )=TEMP
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hiNVEC(2)-OEG
%KVEC (31 =POEG

00~T 120110

IF(WKVEC(1.I.LToBLOCK(I,1i)GO TO 120
IF (WKVEC(2).LToBLCCK ( I3))GO TO 120
IF (WKVEC(2).GT.BLCCK(IsI4)IGO TO 120
IF(NoEQ .2)GO TO 119
IF(WKV C(3).LT.BLOCK(195))GO TO 120
IF (WKVEC(3) .GT.BLCCK(I,6))GO TO 120

119 CONTINUE
IBLOCKa I
GO TO 150

120 CCNTINUE
150 JJ=IRAD(J)

BLIM=WKVEC(JJI
00 160 1= 1,MM

160 BLOCK(J+lI)=ELOCK(IBLC9,I,
BLCCK( IBLOCKt 2*JJI =81114
OLCCK(J+192*J4-1 )BLIM

100 CONTINUE
RETURN
ENO

C SUBROUTINE FCUTZ

C PURPOSE: TO COMPUTE THE FOUTZ STATISTIC FROM THE
C BLOCKS DETERMINED BY SUBROUTINE BLOCKS
C METHCD USES IMSL ROUTINE MDCI' TO EVALUATE
C CHI-SGUARE PROBABILITIES TO EVALUATE THE
C CLOSED FORM EXPRESSION GIVEN FOR 0. THE FN
C STATISTIC IS GENERATED BY FCUTZIS CLCSED
C COMPUTATIONAL FORMULA.
C

SUBROUT INE FOUTZ(BLOCKNN1MtFN,4)
DIMENSION BLOCK(NN96iP(511
CF=FLOAT(M)
TP=0.0
DO 1.00 I=1*NN
CALL M0CI(8LOCK(I,1htDFP1,IER)
CALL MOCH(8LOCK(It2)vOFtP2,IER)
P3=P2-Pl
P4=( BLOCK(I ,4 1-BLOCK(C1,3) 1/6.283 1853
IF(M.EQ.2)GO TO 85
P5=(COS(BLOCK(195))-COS(BLOCK(I,6J11/2.0
GO TO 86

85 P5=1.0
86 P( I)=P3*P4*P5

TP=TPP (I)
100 CONTINUE

FN=0 .0
00 300 1=1,N
AMAX=1.O/NN2P(1)
IF (AMAX.LT.0.)GO TO 300
FNF N +A MA X

300) CONTINUE
RETURN
END

C... 00 @* S@C .** cse... **** 6.Ccc.

C SUBROUTINE BLOCKR
C
C, PURPOSE:
C THIS SUBROUTINE TAKES N 1-VARIATE VECTORS AND PARTITIONS
C A SPACE OF C[MENSION M INTO N+l STATISTICALLY EQUIVALENT
C BLCCKS BY RECCRCING BLOCK ECOORDINATE RANGES IN A MATRIX
C BLOCK BY THE USE OF RECTANGULAR COORDINATES
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C AS CUTTING FUNCTIONS* THE CUTTING COORCINATE USED AT
C EACH STEP IS CONTAINED IN A VECTOR IRAD.

SYBROUTINEVB CCKR(VECT NNNMMM, RAD 8LOCKWKVEC)
DYI'ENSICN VE T(N,14)tBL CK(NNtM),lRAO N),k.KVEC(M)
DO 11 1alMM92

BLOCK(1, I)=-1000.
BLOCK(1, I.1)alOOO.

10 CONTINUE
00 100 J1.tN

DO 110 1;110J
110 WKV CiIJ=VECT(JPII

DO 120 11,tN
DO 13C 11=19M4

IF(WKVECtII).LT.BLOCK(I,2*II-1flGO TO 120
IF(WKVEC(l1i.GT.BLOCK4I,2*II))GO TO 120

131 CCNTINLE
IBLOCI
GO TO 150

120 CONTINUE
150 JJ=IRAD( J

BLIMWKVC(JJ)
DO 160 1=1,141

BLCCK(J.191)=BLOCK( ISLOCKtI)
160 CONTINUE

BLOCK( IBLOCKt2*JJ)=BLIM
BLOCK(J+1,2*JJ-11 BLLM

100 CONTINUE
RETURN
END

C SUBRCUTINE FOUTR
C
C PURPCSE:
C TO CCI4PUTE THE FOUTZ STATISTIC FROM THE
C BLOCKS DETERMINED BY SUBROUTINE BLOCKR
C METHCC USES IMSL ROUTINE 14DNCR TO EVALUATE
C NORMAL PRCSBILITIES TO EVALUATE THE
C CLO ED FORM EXPRESSION GIVEN FOR D. THE FN
C STA ISTIC IS GENERATED BY FCUTZIS CLOSED
C COMPUTATIONAL FCRMULA.

C
SUBROUTINE FOUTR(BLOCKtNNtMMtFN)
DIMENSION BLOCK(NNoMM1)tP(51)
00 100 IllNN
P( I)=1.0
00 200 JNj MM142
CALL MONCP BLCCK(IJ) P1)
CALL ?DNOR[BLCCK( I ,J.1 I P2)
P3 =AS S( P2-P I
U 1) =P(i I *P 3
1 QJ.NE.MM1-1)GC TO 200

200 CONTINUE
101) CONTINUE

FN-0.0
C0 300 I=l1 N
AMAX=1 .OINN-P (I)
IF(AMAX.LEe09O)GO TO 300
FN=FN.A14AX

300 CCNTINUE
RETURN
END
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